PARABOLIC HIGGS BUNDLES AND Γ-HIGGS BUNDLES

INDRANIL BISWAS, SOURADEEP MAJUMDER[™] and MICHAEL LENNOX WONG

(Received 31 August 2012; accepted 5 June 2013; first published online 19 August 2013)

Communicated by D. Chan

Abstract

We investigate parabolic Higgs bundles and Γ -Higgs bundles on a smooth complex projective variety.

2010 *Mathematics subject classification*: primary 14D23; secondary 14H60. *Keywords and phrases*: parabolic Higgs bundle, root stack, Γ Higgs bundle.

1. Introduction

Let *X* be a compact connected Riemann surface and *E* a holomorphic vector bundle on *X*. The infinitesimal deformations of *E* are parametrized by $H^1(X, \text{End } E)$, where End $E = E \otimes E^*$ is the sheaf of endomorphisms of the vector bundle *E*. By Serre duality, we have $H^1(X, \text{End } E)^* = H^0(X, (\text{End } E) \otimes \Omega_X^1)$, where Ω_X^1 is the holomorphic cotangent bundle of *X*. A Higgs field on *E* is defined to be a holomorphic section of (End $E) \otimes \Omega_X^1$; they were introduced by Hitchin [Hi87a, Hi87b]. A Higgs bundle is a holomorphic vector bundle equipped with a Higgs field. Hitchin proved that stable Higgs bundles of rank *r* and degree zero on *X* are in bijective correspondence with the irreducible flat connections on *X* of rank *r* [Hi87a]. He also proved that the moduli space of Higgs bundles on *X* of rank *r* is a holomorphic symplectic manifold, and the space of holomorphic functions on this holomorphic symplectic manifold gives it the structure of an algebraically completely integrable system [Hi87b]. Simpson arrived at Higgs bundles via his investigations of variations of Hodge structures [Si88]. He extended the results of Hitchin to Higgs bundles over higher dimensional complex projective manifolds.

A parabolic structure on a holomorphic vector bundle E on X is roughly a system of weighted filtrations of the fibers of E over some finitely many given points. A parabolic vector bundle is a holomorphic vector bundle equipped with a parabolic

MLW would like to express his gratitude to the Fonds québécois de la recherche sur la nature et les technologies for the support of a Bourse de recherche postdoctorale (B3).

^{© 2013} Australian Mathematical Publishing Association Inc. 1446-7887/2013 \$16.00

structure; parabolic vector bundles were introduced by Mehta and Seshadri [MS80]. Parabolic vector bundles with Higgs structure were introduced by Yokogawa [Yo95].

Our aim here is to investigate the parabolic vector bundles equipped with a Higgs structure. More precisely, we study the relationship between the parabolic Higgs bundles and the Higgs vector bundles on a root stack.

Root stacks are important examples of smooth Deligne–Mumford stacks; see [Cad07, Bo07] for root stacks.

Let *Y* be a smooth complex projective variety on which a finite group Γ acts as a group of automorphisms satisfying the condition that the quotient $X = \Gamma \setminus Y$ is also a smooth variety. There is a bijective correspondence between the *parabolic Higgs bundles* on *X* and the Γ -*Higgs bundles* on *Y*. We prove that the parabolic Higgs bundles on *X* are identified with the Higgs bundles on the associated root stack.

The organization of the paper is as follows. In Section 3 we review the notions of parabolic bundle and Γ -vector bundle and define the parabolic Higgs bundle and Γ -Higgs bundles. As was done for parabolic vector bundles in [Bi97] we describe an equivalence between the category of Γ -Higgs bundles on *Y* and parabolic Higgs bundle on *X*.

Section 4.1 describes the construction of a root stack as done in [Cad07]. In Section 4.2, we investigate vector bundles on root stacks. Section 4.3 generalizes Theorem 3.5 to the case of the root stack over the base space.

2. Preliminaries

Let *Y* be a smooth complex projective variety of dimension *m* endowed with the action $\lambda : \Gamma \times Y \longrightarrow Y$ of a finite group Γ such that:

(1) $X := \Gamma \setminus Y$ is also a smooth variety; and

(2) the projection map $\pi: Y \longrightarrow X$ is a Galois covering with Galois group Γ .

The closed subset of *Y* consisting of points with nontrivial isotropy subgroups for the action of Γ is a divisor $\widehat{D} \subset Y$ [Bi97, Lemma 2.8]. Let $D \subset X$ be its (reduced) image under π and $D = D_1 + \cdots + D_h$ its decomposition into irreducible components. We will always be working with the assumption that the D_{μ} , $1 \leq \mu \leq h$, are smooth, and *D* is a normal crossing divisor; this means that all the intersections of the irreducible components of *D* are transversal. For an effective divisor *D'* on *Y*, by D'_{red} we will denote the corresponding reduced divisor. So D'_{red} is obtained from *D'* by setting all the multiplicities to be one. We set

$$\widetilde{D}_{\mu} := (\pi^* D_{\mu})_{\mathrm{red}}, \quad 1 \le \mu \le h, \quad \widetilde{D} := \sum_{\mu=1}^h \widetilde{D}_{\mu}.$$

There exist k_{μ} , $r \in \mathbb{N}$ for $1 \le \mu \le h$ such that $\pi^* D_{\mu} = k_{\mu} r \widetilde{D}_{\mu}$; with this,

$$\pi^*D=r\sum_{\mu=1}^h k_\mu \widetilde{D}_\mu.$$

It should be clarified that there are many choices of k_{μ} and r. We will write $\overline{D} := \sum_{\mu=1}^{h} k_{\mu} \widetilde{D}_{\mu}$, so that $\pi^* D = r \overline{D}$.

LEMMA 2.1. With the assumption that D is a normal crossing divisor with smooth components, given a point $y \in Y$ with $\pi(y) \in \bigcap_{1}^{l} D_{\mu}$, one can choose coordinates w_1, \ldots, w_m in an analytic neighborhood of y and z_1, \ldots, z_m in an analytic neighborhood of $\pi(y)$ such that D_{μ} is defined by z_{μ} for $1 \le \mu \le l$, \widetilde{D}_{μ} is defined by w_{μ} for $1 \le \mu \le l$ and π is given in the local coordinates by

$$z_1 = w_1^{k_1 r}, \dots, z_l = w_l^{k_l r}, \quad z_{l+1} = w_{l+1}, \dots, z_m = w_m$$

PROOF. This is proved in [Na, page 11, Theorem 1.1.14].

Recall [Del70, Section II.3] that the sheaf $\Omega^1_X(\log D)$ of logarithmic differentials with poles at *D* is the locally free sheaf on *X*, a basis for which in the neighborhood of a point in $\bigcap_{1}^{l} D_{\mu}$ with coordinates chosen as in the lemma is given by

$$\frac{dz_{\mu}}{z_{\mu}}, 1 \le \mu \le l, \quad dz_{\mu}, l+1 \le \mu \le m.$$

Therefore, the dual $\Omega_X^1(\log D)^*$ is the subsheaf of the holomorphic tangent bundle TX given by the sheaf of vector fields that preserve $\mathcal{O}_X(-D) \subset \mathcal{O}_X$.

We have the following analogue of Hurwitz's theorem.

LEMMA 2.2. With $\pi: Y \longrightarrow X$ as above, one has

$$\Omega^1_V(\log D) \cong \pi^* \Omega^1_V(\log D).$$

PROOF. This follows immediately from [EV92, page 33, Lemma 3.21].

Observe that we have inclusions of sheaves

$$\Omega^{1}_{X} \subseteq \Omega^{1}_{X}(\log D) \subseteq \Omega^{1}_{X}(D) := \Omega^{1}_{X} \otimes O_{X}(D),$$

$$\Omega^{1}_{Y} \subseteq \Omega^{1}_{Y}(\log \widetilde{D}) \subseteq \Omega^{1}_{Y}(\widetilde{D}) := \Omega^{1}_{Y} \otimes O_{Y}(\widetilde{D}).$$

Fixing an irreducible component D_{μ} of D, there is a residue map (see [Del70, Section II.3.7])

$$\operatorname{Res}_{D_{\mu}}: \Omega^1_X(\log D_{\mu}) \longrightarrow \mathscr{O}_{D_{\mu}}.$$

In local coordinates z_1, \ldots, z_m on X where D_{μ} is defined by $z_{\mu} = 0$, if ω is a section of $\Omega^1_X(\log D_{\mu})$ with local expression

$$\omega = f_1 dz_1 + \dots + f_\mu \frac{dz_\mu}{z_\mu} + \dots + f_m dz_m,$$

where the f_i , $1 \le i \le m$, are holomorphic functions, then the residue has the local expression

$$\operatorname{Res}_{D_{\mu}}\omega = f_{\mu}|_{z_{\mu}=0}.$$

3. Parabolic Higgs bundles and Γ-Higgs bundles

3.1. Parabolic Higgs bundles. Let E be a torsion-free coherent sheaf on X. We recall that a *parabolic structure* on E with respect to the divisor D is the data of a filtration

$$E = E_{\alpha_1} \supset E_{\alpha_2} \supset \cdots \supset E_{\alpha_l} \supset E_{\alpha_{l+1}} = E(-D),$$

where $0 \le \alpha_1 < \cdots < \alpha_l < 1$ are real numbers called *weights* (see [MY92, Definition 1.2]). The α_j will be chosen without redundancy in the sense that if $\epsilon > 0$, then $E_{\alpha_j+\epsilon} \ne E_{\alpha_j}$. We will often shorten E_{α_j} to E_j . The sheaf *E* together with a parabolic structure is called a *parabolic sheaf* and is often denoted by E_* . If *E* is a locally free sheaf, then we will call E_* a *parabolic vector bundle*. See [MY92] for more on parabolic sheaves.

We will always assume that the parabolic weights are rational numbers whose denominators all divide $r \in \mathbb{N}$, that is, $\alpha_j \in (1/r)\mathbb{Z}$, for $1 \le j \le l$; this way, we may write $\alpha_j = m_j/r$ for some integers $0 \le m_j \le r - 1$. It should be clarified that there are many choices for r. Further, we will make the same assumptions as in [Bi97, Assumptions 3.2].

A parabolic Higgs field, respectively strongly parabolic Higgs field, will be defined as a section $\phi \in H^0(X, (\text{End } E) \otimes \Omega^1_X(\log D))$ satisfying

$$\phi \wedge \phi = 0$$

and

$$(\operatorname{Res}_{D_u}\phi)(E_j|_{D_u}) \subseteq E_j|_{D_u}, \text{ respectively } (\operatorname{Res}_{D_u}\phi)(E_j|_{D_u}) \subseteq E_{j+1}|_{D_u},$$
(3.1)

for $1 \le j \le l$, $1 \le \mu \le h$. By a *parabolic Higgs bundle* we will mean a pair (E_*, ϕ) consisting of a parabolic vector bundle E_* and a strongly parabolic Higgs field ϕ .

REMARK 3.1. Observe that this definition of a parabolic Higgs field differs from that given in [Yo95, Definition 2.2], where one takes $\phi \in H^0(X, (\text{End } E) \otimes \Omega^1_X(D))$.

3.2. Г-Higgs bundles. Let *W* be a vector bundle on *Y* admitting an action Λ : $\Gamma \times W \longrightarrow W$ compatible with the action λ on *Y*. If we think of *W* as a space with projection $r: W \longrightarrow Y$, then this means that

$$\begin{array}{c|c} \Gamma \times W & \stackrel{\Lambda}{\longrightarrow} W \\ \mathbb{1}_{\Gamma \times r} & & & \downarrow r \\ \Gamma \times Y & \stackrel{\Lambda}{\longrightarrow} Y \end{array}$$

commutes. Alternatively, if we think of W as a locally free sheaf then this means that there is an isomorphism

$$L: \lambda^* W \xrightarrow{\sim} p_Y^* W$$

of sheaves on $\Gamma \times Y$ satisfying a suitable cocycle condition. When such an action exists, we will call *W* a Γ -vector bundle. In this realization, if *W*' is another Γ -vector

bundle with $L' : \lambda^* W' \longrightarrow p_Y^* W'$ giving the action on W', then compatible actions on $W \oplus W'$ and $W \otimes W'$ are readily defined since direct sums and tensor products commute with pullbacks.

For each $\gamma \in \Gamma$, the restrictions $L_{\{\gamma\} \times Y} : \lambda_{\gamma}^* W \xrightarrow{\sim} W$ yield isomorphisms $L_{\gamma} : W \longrightarrow \lambda_{\gamma*} W$ (by adjunction) satisfying

$$L_e = \mathbb{1}_W$$
 and $\lambda_{\gamma*}L_\delta \circ L_\gamma = L_{\gamma\delta}$

for all $\gamma, \delta \in \Gamma$. In our case, since Γ is discrete, knowledge of the L_{γ} is enough to reconstruct *L*.

EXAMPLE 3.2. There are three examples of Γ -bundles that will be of particular interest to us.

- (a) The action λ on *Y* induces a natural action on the sheaf of differentials Ω_Y^1 which will be compatible with λ .
- (b) Since $X = \Gamma \setminus Y$, we have $\pi \circ \lambda = \pi \circ p_Y$ as maps $\Gamma \times Y \longrightarrow X$. Thus, if *E* is any vector bundle on *X*, there is a canonical isomorphism $\lambda^* \pi^* E \xrightarrow{\sim} p_Y^* \pi^* E$. Hence the pullback $\pi^* E$ carries a Γ -action for which the action on the fibers is induced by the action on *Y*.
- (c) By the previous example, $\mathscr{O}_Y(\pi^*D) = \pi^*\mathscr{O}_X(D)$ carries a compatible Γ -action. Since $\widetilde{D} \subseteq \pi^*D$ is a Γ -invariant subset we have an induced action on the line bundle $\mathscr{O}_Y(\widetilde{D})$ making it into a Γ -line bundle.

Let W, W' be as above. A homomorphism $\Phi: W \longrightarrow W'$ is said to *commute with the* Γ *-actions* or is a Γ *-homomorphism* if the diagram

$$\begin{array}{c|c} \lambda^* W & \xrightarrow{\lambda^* \Phi} & \lambda^* W' \\ L & & \downarrow L' \\ p_Y^* W & \xrightarrow{p_Y^* \Phi} & p_Y^* W' \end{array}$$

commutes.

If $\Phi \in H^0(Y, (\text{End } W) \otimes \Omega_Y^1)$ is a Higgs field on W, that is, $\Phi \wedge \Phi = 0$, then we will call it a Γ -*Higgs field* if as a map $W \longrightarrow W \otimes \Omega_Y^1$ it commutes with the Γ -actions, where $W \otimes \Omega_Y^1$ has the tensor product action. Thus, for every $\gamma \in \Gamma$, there is a commutative diagram.

If Φ is a Γ -Higgs field, the pair (W, Φ) will be referred to as a Γ -Higgs bundle.

3.3. From Γ **-Higgs bundles to parabolic Higgs bundles.** We now begin with a Γ -Higgs bundle (W, Φ) and from it construct a parabolic Higgs bundle (E_*, ϕ) . The underlying vector bundle *E* is defined as $E := \pi_* W^{\Gamma}$, the sheaf of Γ -invariant sections of $\pi_* W$, and as in [Bi97, Section 2c], the parabolic structure on *E* is defined by

$$E_j := \pi_* W \bigg(\sum_{\mu=1}^h \lfloor -k_\mu r \alpha_j \rfloor \widetilde{D}_\mu \bigg)^{\Gamma}.$$

Suppose $\Phi \in H^0(Y, (\text{End } W) \otimes \Omega^1_Y)$ is a Γ -Higgs field on W. We will think of Φ as a homomorphism $\Phi : W \longrightarrow W \otimes \Omega^1_Y$. Since $\Omega^1_Y \subseteq \Omega^1_Y(\log \widetilde{D})$,

$$\pi_*(W \otimes \Omega^1_Y) \subseteq \pi_*(W \otimes \Omega^1_Y(\log \widetilde{D})) = \pi_*(W \otimes \pi^*\Omega^1_X(\log D)) = \pi_*W \otimes \Omega^1_X(\log D),$$

where the first equality is due to Lemma 2.2 and the last step by the projection formula. Therefore, $\phi := \pi_* \Phi$ may be considered as a map $\pi_* W \longrightarrow \pi_* W \otimes \Omega^1_X(\log D)$, and we have a candidate for a parabolic Higgs field.

Let $U \subseteq X$ be open and let *s* be an invariant section of π_*W over *U*, so that we may think of *s* as a section \widehat{s} of *W* over $\pi^{-1}(U)$ with $L_{\gamma}\widehat{s} = \widehat{s}$ for all $\gamma \in \Gamma$. Then by definition $\phi s := \Phi \widehat{s}$, and for $\gamma \in \Gamma$, using (3.2),

$$\widetilde{L}_{\gamma}(\phi s) = \widetilde{L}_{\gamma}(\Phi \widehat{s}) = \Phi(L_{\gamma} \widehat{s}) = \Phi \widehat{s} = \phi s,$$

so ϕs is a Γ -invariant section, and hence $\phi : E \longrightarrow E \otimes \Omega^1_X(\log D)$.

PROPOSITION 3.3. To a Γ -Higgs bundle (W, Φ) there is a naturally associated parabolic Higgs bundle (E_*, ϕ).

PROOF. We have constructed (E_*, ϕ) . We must prove that ϕ is strongly parabolic. This is a condition on the residues of ϕ along the components of the divisor D, so we may concentrate on those points of D_{μ} that do not belong to any other component of D. Therefore, we may assume that we are in the neighborhood of a point y of \widetilde{D}_1 that lies on no other \widetilde{D}_{μ} . In this neighborhood, for $1 \le j \le l$,

$$E_j = \pi_* W(-m_j k_1 \widetilde{D}_1)^{\Gamma}.$$

We now choose coordinates on Y and X as in Lemma 2.1, so that the divisor D_1 is defined by w_1 and the divisor D_1 is defined by z_1 ; we will write $p := k_1 r$ so that π is given in these coordinates by

$$z_1 = w_1^p, \quad z_2 = w_2, \ldots, z_m = w_m.$$

In these coordinates, near y, we may write

$$\Phi = A_1 dw_1 + \dots + A_m dw_m$$

for some holomorphic sections A_i of End W. We may then consider $A_1dw_1 = (1/p)A_1w_1dz_1/z_1$ as a locally defined map $W \longrightarrow W \otimes \mathscr{O}_Y(-\widetilde{D}_1) \otimes \pi^*\Omega^1_X(\log D_1)$, or more generally, as a map

$$W(-m_j k_1 \widetilde{D}_1) \longrightarrow W(-(m_j k_1 + 1) \widetilde{D}_1) \otimes \pi^* \Omega^1_X(\log D_1)$$

for $1 \le j \le l$. It is easily verified that $W(-(m_jk_1 + 1)\widetilde{D}_1) \subseteq W(-rk_1(\alpha_j + \epsilon)\widetilde{D}_1)$, where $0 \le \epsilon \le 1/rk_1$. So taking invariants we see that $\pi_*A_1dw_1 = (1/p)A_1w_1dz_1/z_1$ gives a locally defined map

$$E_j \longrightarrow E_{\alpha_j + (1/rk_1)} \otimes \Omega^1_X(\log D_1) = E_{j+1} \otimes \Omega^1_X(\log D_1).$$

Since, by definition,

$$\operatorname{Res}_{D_1}\phi = \frac{1}{p}w_1A_1|_{z_1=0},$$

and noting that $(\text{Res}_{D_{\mu}}\phi)(E_{j}|_{D_{1}}) \subseteq E_{j+1}|_{D_{1}}$, it follows that the strong parabolicity condition (3.1) is satisfied.

That $\phi \wedge \phi = 0$ is easily seen, since if s is any section of E, then

$$(\phi \land \phi)s = (\Phi \land \Phi)\widehat{s} = 0$$

since $\Phi \wedge \Phi = 0$.

3.4. From parabolic Higgs bundles to Γ **-Higgs bundles.** Recall that we are working under assumptions as in [Bi97, Assumptions 3.2], hence we can use the construction from [Bi97, Section 3b] in the following proposition.

PROPOSITION 3.4. Given a parabolic Higgs bundle (E_*, ϕ) on X, we can associate a Γ -Higgs bundle (W, Φ) on Y.

PROOF. We will begin by constructing a parabolic vector bundle on X of rank m. The holomorphic vector bundle underlying the parabolic vector bundle is Ω_X^1 . To define the parabolic structure, take any irreducible component D_i of D. Let $\iota : D_i \hookrightarrow X$ be the inclusion map. We have a short exact sequence of vector bundles on D_i

$$0 \longrightarrow N_{D_i}^* \longrightarrow \iota^* \Omega^1_X \longrightarrow \Omega^1_{D_i} \longrightarrow 0,$$

where N_{D_i} is the normal bundle of D_i . Note that the Poincaré adjunction formula says that $N_{D_i} = \iota^* O_X(D_i)$. The quasiparabolic filtration over D_i is the above filtration

$$N_{D}^* \subset \iota^* \Omega_X^1$$

The parabolic weights are 0 and $(rk_i - 1)/rk_i$. More precisely, $N_{D_i}^*$ has parabolic weight $(rk_i - 1)/rk_i$ and the parabolic weight of the quotient $\Omega_{D_i}^1$ is zero. Note that the nonzero parabolic weight $(rk_i - 1)/rk_i$ has multiplicity one. This parabolic vector bundle will be denoted by $\overline{\Omega}_X^1$.

The action of Γ on Y induces an action of Γ on the vector bundle Ω_Y^1 making it a Γ -bundle. From the construction of $\widetilde{\Omega}_X^1$ it can be deduced that the parabolic vector

bundle corresponding to the Γ -bundle Ω_Y^1 is $\widetilde{\Omega}_X^1$. To prove this, first note that if $U_0 \subset X$ is a Zariski open subset such that the complement U_0^c is of codimension at least two, and V, W are two algebraic vector bundles on X that are isomorphic over U_0 , then V and W are isomorphic over X; using Hartog's theorem, any isomorphism $V|_{U_0} \longrightarrow W|_{U_0}$ extends to a homomorphism $V \longrightarrow W$, and similarly, we have a homomorphism $W \longrightarrow V$, and these two homomorphisms are inverses of each other because they are so over U_0 . Next note that

$$(\pi_*\Omega_V^1)^{\Gamma} = \Omega_V^1$$

because $(\pi_*\Omega_Y^1)^{\Gamma} = \Omega_X^1$ over the complement of the singular locus of *D*. Therefore, Ω_X^1 is the vector bundle underlying the parabolic bundle corresponding to the Γ -bundle Ω_Y^1 . It is now straightforward to check that the parabolic weights are of the above type.

Let W be the Γ -bundle on Y corresponding to the parabolic vector bundle E_* on X (using [Bi97, Section 3b]). Let ϕ be a strongly parabolic Higgs field on E_* . It is straightforward to check that ϕ defines a homomorphism of parabolic vector bundles

$$\phi': E_* \longrightarrow E_* \otimes \Omega^1_X,$$

where $E_* \otimes \widetilde{\Omega}^1_X$ is the parabolic tensor product of E_* and $\widetilde{\Omega}^1_X$.

Since the correspondence between parabolic bundles and Γ -vector bundles is compatible with the operation of tensor product, we conclude that the parabolic tensor product $E_* \otimes \widetilde{\Omega}^1_X$ corresponds to the Γ -bundle $W \otimes \Omega^1_Y$. Therefore, the above homomorphism ϕ' pulls back to a Γ -equivariant homomorphism Φ from W to $W \otimes \Omega^1_Y$.

THEOREM 3.5. We have an equivalence of categories between Γ -Higgs bundles on Y and parabolic Higgs bundles on X which satisfy the assumptions as in [Bi97, Assumptions 3.2].

PROOF. Proof is clear from Propositions 3.3 and 3.4 and [Bi97, Sections 2c, 3b].

REMARK 3.6. In Borne's formalism, the parabolic bundle E_* may be considered as a functor $((1/r)\mathbb{Z})^{\text{op}} \longrightarrow \mathfrak{Vect}(X)$, with

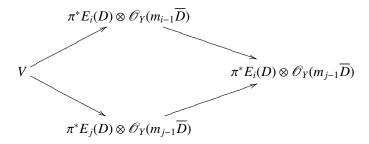
$$\frac{j}{r}\longmapsto E_j(D),$$

and composing with $\pi^* : \mathfrak{Vect}(X) \longrightarrow \mathfrak{Vect}(Y)$, we get a functor $((1/r)\mathbb{Z})^{\mathrm{op}} \longrightarrow \mathfrak{Vect}(Y)$. We also have a covariant functor $(1/r)\mathbb{Z} \longrightarrow \mathfrak{Vect}(Y)$ given by

$$\frac{j}{r}\longmapsto \mathcal{O}_Y(m_{j-1}\overline{D}).$$

Therefore, we obtain a functor $((1/r)\mathbb{Z})^{\text{op}} \times \frac{1}{r}\mathbb{Z} \longrightarrow \mathfrak{Vect}(Y)$

$$\frac{j}{r} \longmapsto \pi^* E_j(D) \otimes \mathscr{O}_Y(m_{j-1}\overline{D}).$$



such that the diagram is terminal among all such diagrams. It is not difficult to check that W is a universal end for the functor defined above, that is, it is an end, and given an end V as in the diagram, there is a unique morphism $V \longrightarrow W$ which yields the appropriate commuting diagrams.

4. Root stacks

The notion of a root stack is something of a generalization of the notion of an orbifold with cyclic isotropy groups over a divisor. Of course, our main interest in this construction is in the case when X is a smooth complex projective variety, but giving the definition for an arbitrary \mathbb{C} -scheme imposes no further conceptual or technical difficulties, so we will give the definition and describe some of the basic properties in this generality. We largely follow the presentations of [Bo07] and [Cad07] here (as well as [The], [Vis08] for generalities), so we direct the reader requiring further illumination on issues raised below to these references.

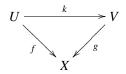
4.1. Definition and construction. We fix a \mathbb{C} -scheme *X*, an invertible sheaf *L* on *X* and $s \in H^0(X, L)$, so that if *s* is nonzero, it defines an effective divisor *D* on *X*. We will also fix $r \in \mathbb{N}$. Let $\mathfrak{X} = \mathfrak{X}_{(L,r,s)}$ denote the category whose objects are quadruples

$$(f: U \longrightarrow X, N, \phi, t), \tag{4.1}$$

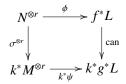
where U is a \mathbb{C} -scheme, f is a morphism of \mathbb{C} -schemes, N is an invertible sheaf on U, $t \in H^0(U, N)$ and $\phi: N^{\otimes r} \xrightarrow{\sim} f^*L$ is an isomorphism of invertible sheaves with $\phi(t^{\otimes r}) = f^*s$. A morphism

 $(f: U \longrightarrow X, N, \phi, t) \longrightarrow (g: V \longrightarrow X, M, \psi, u)$

consists of a pair (k, σ) , where $k : U \longrightarrow V$ is a \mathbb{C} -morphism making



commute and $\sigma: N \xrightarrow{\sim} k^*M$ is an isomorphism such that $\sigma(t) = k^*(u)$. Moreover, the following diagram must commute:



If

$$(g: V \longrightarrow X, M, \psi, u) \xrightarrow{(l,\tau)} (h: W \longrightarrow X, J, \rho, v)$$

is another morphism, then the composition is defined as

$$(l,\tau)\circ(k,\sigma) := (l\circ k, k^*\tau\circ\sigma), \tag{4.2}$$

using the canonical isomorphism $(l \circ k)^* J \cong k^* l^* J$.

We will often use the symbols $\mathfrak{f}, \mathfrak{g}$ to denote objects of \mathfrak{X} . If it is understood that $\mathfrak{f} \in \mathfrak{X}_U$, then by \mathfrak{f} we will denote the quadruple $\mathfrak{f} = (f : U \longrightarrow X, N_{\mathfrak{f}}, \phi_{\mathfrak{f}}, t_{\mathfrak{f}})$.

The category \mathfrak{X} comes with a functor $\mathfrak{X} \longrightarrow \mathfrak{Sch}/\mathbb{C}$ which simply takes \mathfrak{f} to U and (k, σ) to h.

PROPOSITION 4.1 [Cad07, Theorem 2.3.3]. The morphism of categories $\mathfrak{X} \longrightarrow \mathfrak{Sch}/\mathbb{C}$ makes \mathfrak{X} a Deligne–Mumford stack.

REMARK 4.2. The previous statement implies that $\mathfrak{X} \longrightarrow \mathfrak{S}\mathfrak{ch}/\mathbb{C}$ is a category fibered in groupoids. Let $\mathfrak{f} \in \mathrm{Ob}\mathfrak{X}_U$ be an object of \mathfrak{X} lying over U as given in (4.1) and let $g: V \longrightarrow U$ be a morphism of schemes. A choice of pullback $g^*\mathfrak{f} \in \mathrm{Ob}\mathfrak{X}_V$ can easily be described by the tuple

$$(g \circ f : V \longrightarrow X, g^* N_{\mathfrak{f}}, g^* \phi_{\mathfrak{f}}, g^* t_{\mathfrak{f}})$$

and the Cartesian arrow $g^*\mathfrak{f} \longrightarrow \mathfrak{f}$ is given by $(g, \mathbb{1}_{g^*N_\mathfrak{f}})$.

EXAMPLE 4.3 [Cad07, Example 2.4.1]. Suppose X = Spec A is an affine scheme, $L = \mathcal{O}_X$ is the trivial bundle and $s \in H^0(X, \mathcal{O}_X) = A$ is a function. Consider U = Spec B, where $B = A[t]/(t^r - s)$. Then U admits an action of the group of *r*th roots of unity (more precisely, of the group scheme of the *r*th roots of unity) μ_r of order *r*, where the induced action of $\zeta \in \mu_r$, a generator, is given by

$$\zeta \cdot a = a, a \in A, \qquad \zeta \cdot t = \zeta^{-1}t.$$

In this case, the root stack $\mathfrak{X}_{(\mathscr{O}_X,s,r)}$ coincides with the quotient stack $[U/\mu_r]$. Thus, as a quotient by a finite group (scheme), the map $U \longrightarrow \mathfrak{X}$ is an étale cover.

REMARK 4.4. If X is any \mathbb{C} -scheme, and L, s are as before, we may take an open affine cover $\{X_i = \text{Spec } A_i\}$ such that $L|_{X_i} \cong \mathcal{O}_{X_i}$ and $s|_{X_i}$ corresponds to $s_i \in A_i$. Then by the example above,

$$\bigsqcup_i U_i \longrightarrow \mathfrak{X}$$

is an étale cover, where $U_i = \text{Spec}A[t_i]/(t_i^r - s_i)$.

There is also a functor $\pi : \mathfrak{X} \longrightarrow \mathfrak{Sch}/X$, whose action on objects and morphisms is given by

$$\mathfrak{f} \longmapsto f: U \longrightarrow X, \quad (k, \sigma) \longmapsto k;$$

this yields a 1-morphism over $\mathfrak{Sch}/\mathbb{C}$, which we will often simply write as $\pi : \mathfrak{X} \longrightarrow X$.

4.2. Vector bundles and differentials on a root stack. Recall (for example [G01, Definition 2.50], [LM00, Lemme 12.2.1], [Vis89, Definition 7.18]) that a quasi-coherent sheaf \mathscr{F} on \mathfrak{X} consists of the data of a quasi-coherent sheaf $\mathscr{F}_{\mathfrak{f}}$ for each étale morphism $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ along with isomorphisms $\alpha_k = \alpha_k^{\mathscr{F}} : \mathscr{F}_{\mathfrak{f}} \longrightarrow k^* \mathscr{F}_{\mathfrak{g}}$ for any commutative diagram

 $U \xrightarrow{k} V$ $f \xrightarrow{g} y$ (4.3)

such that for a composition $U \xrightarrow{k} V \xrightarrow{h} W \longrightarrow \mathfrak{X}$ one has

$$\alpha_{h\circ k} = k^* \alpha_h \circ \alpha_k. \tag{4.4}$$

A (global) section $\mathfrak{s} \in H^0(\mathfrak{X}, \mathscr{F})$ of \mathscr{F} over \mathfrak{X} is the data of a global section $\mathfrak{s}_{\mathfrak{f}} \in H^0(U, \mathscr{F}_{\mathfrak{f}})$ for each étale morphism $\mathfrak{f} : U \longrightarrow \mathfrak{X}$ such that for a diagram (4.3) as above, one has

$$\alpha_k(\mathfrak{s}_{\mathfrak{f}}) = k^*\mathfrak{s}_{\mathfrak{g}}.$$

A quasi-coherent sheaf \mathscr{F} on \mathfrak{X} is a subsheaf of a quasi-coherent sheaf \mathscr{G} if $\mathscr{F}_{\mathfrak{f}} \subseteq \mathscr{G}_{\mathfrak{f}}$ for all étale $\mathfrak{f} : U \longrightarrow \mathfrak{X}$.

LEMMA 4.5. In the situation of Example 4.3, where X = SpecA is affine, $U := SpecA[t]/(t^r - s)$ and $\mathfrak{X} = [U/\mu]$, then for a quasi-coherent sheaf \mathscr{F} on \mathfrak{X} , \mathscr{F}_U admits a μ_r -action compatible with that on U.

PROOF. We have $U \times_{\mathfrak{X}} U \cong U \times \mu$ and under this isomorphism, the two projection maps from $U \times_{\mathfrak{X}} U$ correspond to the maps $p_U, \lambda : U \times \mu \longrightarrow U$, where p_U is the projection onto U and λ is the action on U. Then the required action is defined by the composition

$$p_U^*\mathscr{F}_U \xrightarrow{\alpha_{p_U}^{-1}} \mathscr{F}_{U \times_{\mathfrak{X}} U} \xrightarrow{\alpha_{\lambda}} \lambda^* \mathscr{F}_U.$$

This concludes the proof.

4.2.1. The sheaf of differentials on \mathfrak{X} . The sheaf of differentials $\Omega_{\mathfrak{X}}^1 = \Omega_{\mathfrak{X}/\mathbb{C}}^1$ can be defined as follows. If $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ is an étale map, then we simply set

$$\Omega^1_{\mathfrak{X},\mathfrak{f}} := \Omega^1_{U/\mathbb{C}}.$$

If we are given a diagram (4.3), then from the composition $U \xrightarrow{k} V \longrightarrow \operatorname{Spec}\mathbb{C}$, one obtains a sequence

$$0 \longrightarrow k^* \Omega_{V/\mathbb{C}} \longrightarrow \Omega_{U/\mathbb{C}} \longrightarrow \Omega_{U/V} \longrightarrow 0,$$

which is left exact [The, More on Morphisms, Ch. 33, Lemma 9.9] and whose last term is zero since k is necessarily étale. This defines isomorphisms α_k . The requirement (4.4) will be met because of the universal properties these morphisms possess.

4.2.2. The tautological invertible sheaf on \mathfrak{X} . The root stack \mathfrak{X} possesses a tautological invertible sheaf \mathscr{N} . For an étale morphism $\mathfrak{f}: U \longrightarrow \mathfrak{X}$, we simply take

$$\mathcal{N}_{\mathfrak{f}} := N_{\mathfrak{f}}.$$

Given a diagram (4.3), one has an isomorphism $(\mathbb{1}_U, \sigma) : \mathfrak{f} \longrightarrow k^*\mathfrak{g}$ and one may take

$$\alpha_k^{\mathcal{N}} := \sigma : N_{\mathfrak{f}} \longrightarrow k^* N_{\mathfrak{g}}.$$

The expression in the second component of (4.2) implies that (4.4) is satisfied. This defines the invertible sheaf \mathcal{N} on \mathfrak{X} . Furthermore, by definition, we also get a tautological section t of \mathcal{N} over \mathfrak{X} by simply taking

 $\mathbf{t}_{\mathbf{f}} := t_{\mathbf{f}}.$

4.3. Higgs fields on root stacks. Let *X* be as in Section 2, so that it is a smooth complex projective variety; *D* will be a normal crossing divisor with smooth components. Let $s \in H^0(X, \mathcal{O}_X(D))$ be a section with (s) = D. We also fix $r \in \mathbb{N}$. In all that follows $\mathfrak{X} = \mathfrak{X}_{(\mathcal{O}_X(D),r,s)}$ will be the associated root stack as constructed in Section 4.1.

REMARK 4.6. Consider the fuller situation of Section 2, where $\pi : Y \longrightarrow X$ be a Galois cover of smooth complex projective varieties and there is a divisor \overline{D} on Y such that $\pi^*D = r\overline{D}$. Then there is an isomorphism $\phi : \mathscr{O}_Y(\overline{D})^{\otimes r} \longrightarrow \pi^*\mathscr{O}_X(D)$ and a section $t \in H^0(Y, \mathscr{O}_Y(\overline{D}))$ such that $\phi(t^{\otimes r}) = \pi^*s$. Therefore, the quadruple $(\pi : Y \longrightarrow X, \mathscr{O}_Y(\overline{D}), \phi, t)$ defines a morphism

$$\widehat{\pi}: Y \longrightarrow \mathfrak{X}.$$

4.3.1. Higgs fields. Let \mathcal{V} be a vector bundle on \mathfrak{X} . A Higgs field Φ on \mathcal{V} is a homomorphism $\Phi : \mathcal{V} \longrightarrow \mathcal{V} \otimes \Omega^1_{\mathfrak{X}}$. This means that for each étale morphism $\mathfrak{f} : U \longrightarrow \mathfrak{X}$ we have a homomorphism $\Phi_{\mathfrak{f}} : \mathcal{V}_{\mathfrak{f}} \longrightarrow \mathcal{V}_{\mathfrak{f}} \otimes \Omega^1_U$ such that given a diagram (4.3), we

obtain a commutative square.

THEOREM 4.7. There is an equivalence of categories of Higgs bundles on \mathfrak{X} and parabolic Higgs bundles on X.

PROOF. We remark that a parabolic structure is given locally, so we may assume that $X = \operatorname{Spec} A$ is affine and that the parabolic divisor D is defined by $s \in A$. Then as in Example 4.3, we may take $U = \operatorname{Spec} B$ where $B = A[t]/(t^r - s)$, so that $\mathfrak{X} = [U/\mu]$. In this case, the map $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ is étale; we will write $f: U \longrightarrow X$ for the underlying map induced from $A \longrightarrow B$. Given a vector bundle \mathcal{V} , by Lemma 4.5, the bundle $\mathcal{V}_{\mathfrak{f}}$ on U carries a compatible μ -action. The fact that $\Phi_{\mathfrak{f}}$ commutes with this action comes from the existence of the diagram (4.5) for the two projection morphisms $U \times_{\mathfrak{X}} U \longrightarrow U$. Thus, we are reduced to the case of Γ -bundles when $\Gamma = \mu$, which comes from Propositions 3.3 and 3.4.

Acknowledgement

We are very grateful to the referee for helpful comments to improve the exposition.

References

- [Bi97] I. Biswas, 'Parabolic bundles as orbifold bundles', Duke Math. J. 88(2) (1997), 305–325.
- [Bo07] N. Borne, 'Fibrés paraboliques et champ des racines', *Int. Math. Res. Not.* **2007**(16) (2007), Article ID rnm049, 38 pages.
- [Cad07] C. Cadman, 'Using stacks to impose tangency conditions on curves', *Amer. J. Math.* **129**(2) (2007), 405–427.
- [Del70] P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Lecture Notes in Mathematics, 163 (Springer, Berlin, 1970).
- [EV92] H. Esnault and E. Viehweg, *Lectures on Vanishing Theorems*, DMV Seminar, 20 (Birkhäuser, Basel, 1992).
- [G01] T. L. Gómez, 'Algebraic stacks', Proc. Indian Acad. Sci. Math. Sci. 111(1) (2001), 1–31.
- [Hi87a] N. J. Hitchin, 'The self-duality equations on a Riemann surface', Proc. Lond. Math. Soc. 55 (1987), 59–126.
- [Hi87b] N. J. Hitchin, 'Stable bundles and integrable systems', Duke Math. J. 54(1) (1987), 91–114.
- [LM00] G. Laumon and L. Moret-Bailly, Champs Algébriques (Springer, Berlin, 2000).
- [Ma98] S. Mac Lane, *Categories for the Working Mathematician*, 2nd edn. Graduate Texts in Mathematics, 5 (Springer, New York, 1998).
- [MY92] M. Maruyama and K. Yokogawa, 'Moduli of parabolic stable sheaves', *Math. Ann.* **293** (1992), 77–99.
- [MS80] V. Mehta and C. Seshadri, 'Moduli of vector bundles on curves with parabolic structures', Math. Ann. 248 (1980), 205–239.
 - [Na] M. Namba, Branched Coverings and Algebraic Functions, Pitman Research Notes in Mathematics, 161 (Longman Scientific & Technical, Harlow, 1987).

- [Si88] C. T. Simpson, 'Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization', *J. Amer. Math. Soc.* **1** (1988), 867–918.
- [The] The stacks project authors, *Stacks Project*, http://math.columbia.edu/algebraic_geometry/ stacks-git.
- [Vis89] A. Vistoli, 'Intersection theory on algebraic stacks and on their moduli spaces', *Invent. Math.* 97 (1989), 613–670.
- [Vis08] A. Vistoli, Notes on Grothendieck topologies, fibrered categories and descent theory, http://homepage.sns.it/vistoli/descent.pdf, 2008.
- [Yo95] K. Yokogawa, 'Infinitesimal deformations of parabolic Higgs sheaves', Internat. J. Math. 6 (1995), 125–148.

INDRANIL BISWAS, School of Mathematics,

Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India e-mail: indranil@math.tifr.res.in

SOURADEEP MAJUMDER, School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India e-mail: souradip@math.tifr.res.in

MICHAEL LENNOX WONG, Chair of Geometry, Mathematics Section, Ecole Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzerland e-mail: michael.wong@epfl.ch